A Data Mining Based Method for Route and Freight Estimation
نویسندگان
چکیده
We present a method, which makes use of historical vehicle data and current vehicle observations in order to estimate 1) the route a vehicle has used and 2) the freight the vehicle carried along the estimated route. The method includes a learning phase and an estimation phase. In the learning phase, historical data about the movement of a vehicle and of the consignments allocated to the vehicle are used in order to build estimation models: one for route choice and one for freight allocation. In the estimation phase, the generated estimation models are used together with a sequence of observed positions for the vehicle as input in order to generate route and freight estimates. We have partly evaluated our method in an experimental study involving a medium-size Swedish transport operator. The results of the study indicate that supervised learning, in particular the algorithm Naive Bayes Multinomial Updatable, shows good route estimation performance even when significant amount of information about where the vehicle has traveled is missing. For the freight estimation, we used a method based on averaging the consignments on the historical known trips for the estimated route. We argue that the proposed method might contribute to building improved knowledge, e.g., in national road administrations, on the movement of trucks and freight. c © 2015 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Conference Program Chairs.
منابع مشابه
On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملPresented a method for estimating the cost of software using PCA to reduce the size and with the help of data mining
These days, data mining one of the most significant issues. One field data mining is a mixture of computer science and statistics which is considerably limited due to increase in digital data and growth of computational power of computer. One of the domains of data mining is the software cost estimation category. In this article, classifying techniques of learning algorithm of machine ...
متن کاملEstimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm
Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical ...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملGrade estimation of Zu2 Jajarm deposit by considering imprecise variogram model parameters based on the extension principle
Nowadays, kriging has been accepted as the most common method of grade estimation in mineral resource evaluation stage. Access to the crisp assay data and a variogram model are the necessary means for the utilization of this method. Since fitting a crisp variogram model is generally difficult, if not impossible, the fitted theoretical model is usually tainted with uncertainty due to various rea...
متن کامل